
 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES |ACADEMY

P a g e | 1

© Copyright QA Systems GmbH 2016 www.qa-systems.com

The Ada language is widely accepted as the language of choice for
the implementation of safety related systems and as a result, much
effort has been put into the identification of successful techniques
for its testing. In this paper we discuss the impact of the Ada
standard upon the testability of safety related systems, and
describe techniques which can be utilised to improve the likelihood
of achieving testing success.

White Paper

Testing Techniques for

Ada 95

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 2

© Copyright QA Systems GmbH 2016 www.qa-systems.com

Testing Techniques for Ada 95

Contents
1 Introduction .. 3

2 Testing Techniques .. 4

2.1 HIERARCHICAL LIBRARIES ... 4

2.1.1 Using Hierarchical Library Units to Increase Testability 5

2.1.2 The Impact of the Hierarchical Library Upon Testing 8

2.1.3 Recommendations 9

2.2 PROTECTED OBJECTS .. 10

2.2.1 Testing Protected Objects 10

2.2.2 Testing Clients of Protected Objects 12

2.2.3 Recommendations 13

2.3 CONTROLLED TYPES .. 13

2.3.1 The Impact of Controlled Types Upon Testing 14

2.3.2 Recommendations 16

3 Summary and Conclusions ..16

QA Systems’ fundamental goals are to accelerate and improve software development. Operating on
a global scale, QA Systems has over 350 blue-chip customers, spanning a range of industries,
including aerospace & defence, automotive, healthcare and railways. The company supplies and
supports its own tools, in addition to carefully selected products from strategic business partners,
for static or dynamic testing, requirements engineering, architectural analysis and software metrics.

Copyright Notice
Subject to any existing rights of other parties, QA Systems GmbH is the owner of the copyright of this
document. No part of this document may be copied, reproduced, stored in a retrieval system,
disclosed to a third party or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of QA Systems GmbH.

© Copyright QA Systems GmbH 2016

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 3

© Copyright QA Systems GmbH 2016 www.qa-systems.com

Testing Techniques for Ada 95

1 Introduction
The Ada language is chosen for the implementation of safety related systems because it encourages
good software engineering practices. Unfortunately, some of these practices make efficient testing
difficult. As a consequence, many techniques have been developed which, when applied at the
design stage, can improve the testability of Ada software. These techniques remain useful when
testing Ada 95 due to the similarity between Ada 95 and the previous Ada standard. In this paper we
discuss the impact of Ada 95 upon the testability of safety related systems, and describe techniques
which can be utilised to improve the likelihood of achieving testing success. In particular, we
concentrate on unit and small scale integration testing, as these are the areas likely to be affected by
the use of the new language features. Throughout this paper, our aim is to emphasise design for
testability as the primary means of achieving testing success.

This paper focuses its attention on three features of the Ada language: Protected Objects,
Hierarchical Libraries and Controlled Types. We begin by considering the effect that the hierarchical
library has on the testing process and find that it provides the single most significant increase in
testability of all Ada 95 language features. We then consider protected objects because we expect
them to be one of the first features of Ada 95 to be widely accepted in safety related applications.
Finally we consider the significance of using controlled types and discuss the problems that they
cause during testing.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 4

© Copyright QA Systems GmbH 2016 www.qa-systems.com

Testing Techniques for Ada 95

2 Testing Techniques
In this section, we discuss each of our chosen Ada 95 language features in turn. We begin our
discussions with a brief précis of each feature which is intended as a refresher for readers who are
already familiar with Ada 95. Those with no Ada 95 experience should supplement this with a good
Ada 95 textbook.

2.1 Hierarchical Libraries
There are several drawbacks to the package model of Ada 83, which become apparent when
programming large or complex systems. For example, it is often desirable to use multiple library
packages to model a complex abstraction, either for ease of implementation, or so that different
aspects of the user interface can be encapsulated separately. In Ada 83, the only way to achieve this
implementation is to put the details of the abstraction into the visible part of a package, thereby
breaking the encapsulation. The alternative ‘safe’ approach results in a single monolithic package
which is more difficult to use and to maintain.

A more common problem, which almost all Ada engineers have encountered at some time, is the
inability to extend a package without recompiling all of its clients. This results in long and
unnecessary periods of recompilation.

In Ada 95, these problems have been solved by the introduction of a hierarchical structure to the
package model. In this revised model, child units can be declared which have visibility of the private
part of their parent package. The simple example below is based upon that in Barnes [5] and
illustrates the typical use of a child unit:

In the example Complex.Polar is a child package of Complex, and as a result the operations R and
Theta can be implemented efficiently using knowledge of the internal representation of the Complex
type.

As the name implies it is not only packages which can be child units, in fact a child unit can also be a
subprogram, generic or generic instantiation.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 5

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

2.1.1 Using Hierarchical Library Units to Increase
Testability

A problem which is present to some degree at all levels of testing is how to gain access to the
information hidden inside a package. The traditional way of obtaining this access is to make use of
the test point technique. In the simplest form of this technique, a procedure, known as the test
point, is inserted into the package under test. This procedure serves no purpose in the normal
implementation of the package and is usually given a null implementation. During testing, the null
implementation is replaced with test code which consequently has access to the information hidden
inside the package. Unfortunately, this approach suffers from two drawbacks: it is intrusive, and it is
difficult to use in all but the simplest of configurations.

Hierarchical libraries provide the Ada 95 tester with an alternative to the test point approach. Unlike
test points, the use of a child unit is completely non-intrusive and is extremely flexible. The example
below illustrates how a child subprogram can be used to perform an isolation test of one operation
of a simple stack abstraction:

Under many circumstances, child units are a suitable replacement for test points. However, we
cannot eliminate test points entirely. Although child units give access to the private part of a
package, the content of the package body remains hidden. In situations where there is information
in the body that is required during testing, we must again rely upon the test point technique.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 6

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

Careful consideration of the requirements of testing during the design phase makes it possible to
minimise the need for test points by simply reorganising the implementation of an abstraction. The
simplest technique is to move declarations from the body of a package into the private part of its
specification, but this technique should be treated with caution for several reasons:

 Declarations that are promoted to the private part of a package are visible to both test and
non-test children alike. This is often considered an advantage because it is difficult to know
in advance whether an abstraction will need to be extended in the future, and if so which
aspects of the implementation will be needed.

 A compile time dependency is introduced between the implementation of an abstraction
and its clients. The independence of implementation and interface is one of the great
strengths of the Ada package model and the introduction of new dependencies is something
which we try to minimise.

 Many object-oriented mappings assign special significance to the private part of a package
and consequently there may be conflicting constraints upon the placement of some
declarations.

The addition of extra compile-time dependencies may be acceptable for a very stable abstraction,
but as a general purpose technique this approach is inadequate. Fortunately there is a powerful
alternative which provides full visibility to the implementation of an abstraction while actively
reducing compile time dependencies. This technique relies upon the use of private child units which
are discussed below.

While public child units are used to extend the interface of an abstraction, private child units can be
used to decompose the implementation of an abstraction without exposing any additional
functionality to its clients. To enable this, the visibility of a private child unit differs from that of a
public child in two ways. A private child unit is totally private to its parent package. It is only
accessible to its siblings, and even then only to their bodies; and the visible part of a private child has
access to its parent’s private part. The first rule is required to prevent a private child exporting any
private information from its parent by, for example, using a rename.

Consider an alternative implementation of the simple stack shown above. In this example the test
requires access to the package body data to verify that the Push operation was successful.

One way of gaining visibility of the internals of this stack is to move the hidden data and type
declarations into the private part of the package. However if the stack is changed, for example to
increase its size, all of its clients must be recompiled. A better solution is to move the declarations
into a private child package as shown below. This introduces no extra compilation dependencies yet
renders the stack completely open to inspection during testing.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 7

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

In this scenario the test for the stack abstraction is implemented as a public child of Integer_Stack,
giving it unrestricted access to the declarations in the specification of the private child:

Abstractions that are designed in this way, using a private child package to declare package body
data, are not only easier to test but are also more easily extended.

Besides their usefulness as a replacement for test points, hierarchical library units can also improve
the testability of a system in other ways. In particular, there are many operations which are specific
to testing that would benefit from increased visibility of an abstraction. A good candidate for this
type of operation is a “check” procedure which can be used during testing to verify that an object
has a particular value. Increased visibility of the internals of an abstraction allows this procedure to
take advantage of the full view of a type to give improved diagnostics when the check fails. The great
benefit of using child units to implement these utilities is that they can be made available during
testing and removed when no longer needed, without affecting any other packages.

The example below illustrates the use of a child package to provide testing-specific operations for
the Complex type. The Is_Valid operation can be used to ascertain that a Complex object satisfies its
invariants, and may be implemented using the new Ada 95 Valid attribute.

Careful consideration must be given before adding testing utilities to a package because they
introduce an unwanted dependency between the test and the implementation details of the
abstraction. This becomes a problem if the utilities are added on a per-test basis because any change
to the representation of the abstraction requires them all to be updated. To avoid this, the utilities
should be considered part of the design of the abstraction, and a few general purpose operations
should be added rather than many test specific ones. As a general rule the dependencies of a test
should be a subset of the dependencies of the software under test. This ensures that the test will
only need modification when the software under test changes.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 8

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

2.1.2 The Impact of the Hierarchical Library Upon Testing
We have shown that hierarchical library units are a valuable tool when implementing unit and
integration level tests, because they allow us an unrestricted view of the private part of a package.
Private child units also provide us with a simple idiom for structuring the body of a package so that
declarations that are needed during testing are readily available.

In this section we consider the testing issues that arise when hierarchical library units are used, not
for testing per se, but to improve the properties of a design.

As mentioned previously public child units can be used to partition different aspects of an
abstraction, or to extend an existing abstraction with new functionality. We expect the latter to
become common in Ada 95 due to the increased use of object-oriented techniques and the
emphasis that they place upon programming by extension. In both of these cases the techniques
that we have described in the previous section are sufficient to gain access to all of the information
that is needed during testing.

The example below illustrates the typical use of a child package to segregate operations that are
only of interest to a limited number of clients:

There are several ways in which this pair of packages can be tested. The first alternative is to write a
combined test for both sets of operations, using a child package of Message.Tracking to gain
visibility of both private parts. The obvious problem with this approach is that we lose the
independence between the core abstraction and the tracking extensions; although we can use the
message abstraction on its own we cannot test it without the tracking extensions. A better approach
is to implement a stand-alone test for the core abstraction and then to test the tracking operations
separately.

During testing it is important to remember that the operations of a child package have privileged
access to the internals of their parent package. As a result it is possible for a child operation to break
some of the existing operations of the parent package which were considered adequately tested.
This means that an adequate test for the child package, as identified by Harrold [10], must re-test all
of the operations of the core abstraction which may have broken. Without careful analysis it is
difficult to tell which operations will need to be re-tested in the light of the new package.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 9

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

Private child units will often be used to structure the implementation of a complex abstraction as a
sub-system of packages. For example the Message abstraction shown above may be implemented
using a queue of incoming and outgoing messages. The fact that the abstraction is implemented
using a queue is of no significance to its clients, and so a private child package is used to hide the
details. The private descendants used in implementing a sub-system should be subject to the same
tests as other units in the system, and in practice private child units introduce no extra difficulty for
the test engineer. The queue package from the Message sub-system is shown below, together with a
child subprogram used to test it:

Note that this child subprogram can be made the main subprogram of the test even though it is a
private descendant of the Message package.

There is at least one other motivation for the implementation of a design using a set of hierarchical
library units and that is to avoid polluting the library name-space. The structure of the Ada 95
predefined library hierarchy is in part motivated by this. The use of hierarchical library units for this
purpose does not introduce any new testing considerations.

2.1.3 Recommendations
 Use a public child unit instead of a test point to gain visibility of the internals of an

abstraction.

 Declare data and types that are local to the implementation of an abstraction in a private
child instead of the package body. This makes the declarations available during testing, and
also to extensions.

 At design time use a child package to implement utilities that will be useful during testing,
e.g. check functions.

 Perform an integration test of the operations of a child unit with those of its parent. This
ensures that the child unit has not abused its privileged visibility and detrimentally affected
the operations of its parent.

 Avoid extending an abstraction using a child package when the visibility of a normal client
will suffice. This will avoid unnecessary re-testing of the parent abstraction.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 10

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

2.2 Protected Objects
Protected objects were added to Ada 95 to provide a passive and data oriented means of
synchronising access to shared data. These objects can be considered similar to packages or tasks in
that they are divided into a distinct specification and body. The specification of the protected object
encapsulates the data that is being shared, and defines the interface used to access the data. The
body of the protected object provides its implementation.

The interface to a protected object is defined by its protected operations, either procedures,
functions or entries, which the language guarantees will have exclusive access to the object’s data.

The example below uses the familiar concept of a quantity, or counting semaphore to illustrate the
typical use of protected objects. For a detailed discussion of the implementation of semaphores and
other building blocks using protected objects see [1].

Protected procedures and entries have read and write access to the shared data and consequently
require exclusive access to the object. Protected functions have read-only access and therefore
more than one function can be active simultaneously.

2.2.1 Testing Protected Objects
The Ada 95 Style Guide [6] recommends that the time spent inside protected operations is kept
short so that the protected object is locked for as little time as possible. If this guideline is followed,
the amount of code involved in the implementation of the protected object will be small. As a result
the overhead of isolation testing each protected operation is unacceptably high, and we therefore
recommend that the protected object as a whole is considered for isolation testing. Further
motivation for testing at this level is the difficulty of isolating protected operations from each other
without changing the protected object. The usual means of obtaining this independence is to use
separate compilation, but for reasons of efficiency Ada 95 does not allow protected operations to be
declared separate.

A problem encountered when testing protected objects, as with any software that encapsulates
state, is that there will often be areas of functionality that are difficult to exercise in a test
environment. In order to make this functionality testable it is useful to have access to the shared
data inside the protected object so that we can manipulate it directly. This can be realised by adding
operations to the object’s interface which access each protected data item. This allows the
protected object to be conveniently set into any state that is required during testing.

It is interesting to note that neither of the techniques described in section 2.1 can be used to
improve the testability of protected objects: the child unit approach is ruled out because protected
objects cannot have children; and the test point technique is not practical because of the lack of
separate compilation.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 11

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

The example below shows the semaphore example modified for testing:

The problem with adding testing operations to the protected object is that there is nothing to
distinguish them from the object’s normal interface. This distinction is important because the testing
interface must not be used by any normal clients of the object. One solution to this problem is to
encapsulate the protected object inside the private part of a package. This allows the normal
interface to be exported from the package while the testing interface remains hidden inside the
private part

The example below shows the semaphore example modified to add a hidden testing interface:

To utilise the testing interface all tests are written inside a child unit of the Semaphore package,
from where they have visibility to both the normal and testing interfaces:

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 12

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

The disadvantage of this structure is that all children of the Semaphore package have access to the
testing operations of the protected object. An alternative encapsulation strategy is to declare the
protected object inside the body of a package and use the test point technique [4] to give test code
visibility to the testing operations. Testing is performed by replacing the normally null
implementation of the test point with test code which can then freely utilise the testing operations.

It is important to note that there are circumstances in which a protected entry must be called
directly, not via an interface subprogram. A good example of this is a protected entry which is the
target of a timed or conditional entry call, or the trigger of an asynchronous transfer of control.

2.2.2 Testing Clients of Protected Objects
Protected objects can have a negative impact on the testability of parts of a system that use them
unless care is taken to ensure that they can be sufficiently de-coupled from the rest of the system.
When the client of a protected object is subject to isolation testing all calls to the protected
operations must be simulated. This would normally be achieved by writing “stubs” for the called
operations using a suitable test harness [11]. The efficient use of this technique relies upon the
simulated operations being declared separate. As mentioned above, Ada 95 does not allow
protected operations to be declared separate, so during testing the protected body as a whole must
be simulated.

An attractive alternative is available if the protected object is encapsulated inside a package as
described above. In this situation it is the interface subprograms of the package which, when
declared separate, are simulated, rather than the protected operations themselves.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 13

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

2.2.3 Recommendations
 Consider testing protected objects as a whole rather than isolation testing each operation.

 Define testing operations for each protected object, to allow direct manipulation of the
object’s state.

 If testing operations are added, shield them from the user by defining a testing interface.

 Consider using a testing interface to de-couple the protected object from its clients during
isolation testing.

 Alternatively, declare the body of the protected object separate to allow it to be simulated.

2.3 Controlled Types
Regardless of how well an abstraction is designed and implemented, if it is not used correctly then it
will not work. Probably the most common misuses of an abstraction are incorrect initialisation and
inadequate clean up when it object goes out of scope. The Ada language exacerbates this problem
by allowing a scope to be left in many different ways, for example by the propagation of an
exception, an abort, a return statement, or an asynchronous transfer of control.

In Ada 95 the designer of an abstraction can ensure that these operations happen correctly under all
circumstances by using Controlled Types. A controlled type is created by derivation from one of the
predefined types in package Ada.Finalization, and from this type it inherits either two or three of the
following subprograms:

 Initialize, which is called to provide default initialisation of a new object;

 Finalize, which is called to clean up an object when it is no longer needed;

 Adjust, which is called during assignment to modify Ada’s default bit-wise copy. Note that
adjustment is only available for non-limited types.

The default implementation of these subprograms can be overridden by the derived type, and is
automatically called by the Ada runtime system when an object of the type is created, deleted or
assigned.

The example below, which is taken from the Ada 95 Rationale [3], illustrates the use of a controlled
type for the safe management of a resource:

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 14

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

In this example the creation of a Handle object causes the Initialize procedure to be called, which in
turn locks the specified resource. When the object goes out of scope, no matter how the scope is
left, the Finalize procedure guarantees that the resource is unlocked.

2.3.1 The Impact of Controlled Types Upon Testing
It is expected that many abstractions will take advantage of the benefits of controlled types to
provide a cleaner, more reliable interface. When a controlled type is used for this purpose it is
considered an implementation detail of the abstraction and its use is hidden from the abstraction’s
clients. This is of course advantageous because the abstraction can then be re-written to add or
remove the controlled type without changing the remainder of the system. It is unfortunate then
that the use of a controlled type often emerges during testing and must be considered part of the
abstraction’s interface.

To understand why this happens consider the way in which the simple abstraction shown below,
which is built using the Handle abstraction, might be tested :

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 15

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

Assuming that the isolation testing strategy is used to test this abstraction, all calls to subprograms
that are not part of the software under test must be simulated. This causes a problem because the
controlled operations are implicitly called during the test whenever a Resource_Wrapper object is
created or deleted. Like the other operations the controlled operations can be simulated, but doing
so introduces a dependency between the test and the implementation of the abstraction. For
example the test for Resource_Wrapper must change if the Handle abstraction is rewritten to avoid
the use of controlled types. In practice the problem is made worse if the software under test is
implemented using several different abstractions, all of which use controlled types. In this situation
the test transitively depends upon the implementation of all of the abstractions.

The simulation of controlled operations and the dependency that this introduces can be avoided by
using the operation’s real implementation during testing. However, the integrity of the test can only
be guaranteed if the controlled operations have already been thoroughly tested. A large part of the
system may be involved in the verification of the controlled types, particularly when they have a
non-trivial implementation, and many of the benefits of isolation testing are lost.

A solution to this problem is to provide a null implementation of the controlled operations during
testing. This enables the test to remain independent of the controlled nature of the abstraction
because the offending operations need not be simulated. In addition the implementation of each
null operation is trivial and therefore does not need to be tested before it is used. It is important to
note that this strategy will only work if the encapsulation provided by an abstraction is complete, in
other words the software under test must not directly depend upon the actions of the controlled
operations. The elided example below helps illustrate this point:

A controlled abstraction, like any other abstraction, must at some point be tested. During testing the
controlled operations are considered part of the software under test and are not simulated.
However, the subprograms that are called by the controlled operations are simulated and this may
cause difficulties.

The number of calls made to controlled operations will often be large; every time a controlled object
is created, deleted or assigned a call is made. This places a significant burden upon the tester who
must specify the order of these calls. In some situations it may also be difficult to identify the precise
order in which the calls occur. This is due to the implementation permissions granted by the ARM for
non-limited controlled types. A good example of the use of such permission is in the elimination of
temporary objects during the assignment of controlled types.

In practice these problems only occur when a controlled operation results in a call to a subprogram
that is outside the software under test. Fortunately most of the common uses of controlled types
will not cause this problem.

 SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

P a g e | 16

Testing Techniques for Ada 95

© Copyright QA Systems GmbH 2016 www.qa-systems.com

2.3.2 Recommendations
 Do not simulate calls to controlled operations during testing; simulating these calls

introduces a dependency between the test and the use of the controlled type.

 During testing, provide a null implementation of any controlled operations that are not part
of the software under test. These operations can then safely be called as part of the test.

 Be aware that difficulties may arise when testing a controlled abstraction. In particular
remember that the implementation permissions granted by the ARM may result in platform
specific tests.

3 Summary and Conclusions
In this paper we have presented several techniques that can be used to improve the testability of
software written in Ada 95. In particular we have focused our attention upon three features of the
Ada language: the hierarchical library, protected objects, and controlled types. We have shown that
the hierarchical library has the greatest impact upon the testing process because it provides a
convenient method of accessing the information hidden inside an abstraction. The lack of visibility of
this information was a significant obstacle to achieving testability when using Ada 83. We have also
shown that the full benefits of the hierarchical library can only be realised if testing is considered at
an early stage in the development process.

We followed our discussion of the hierarchical library by considering some of the difficulties
encountered when testing software that uses protected objects; the effects of controlled types were
also considered. Again, the techniques that we recommend emphasise that early consideration of
the testing process is essential if testing is to be both thorough and efficient.

	Testing Techniques for
	Ada 95
	1 Introduction
	2 Testing Techniques
	2.1 Hierarchical Libraries
	2.1.1 Using Hierarchical Library Units to Increase Testability
	2.1.2 The Impact of the Hierarchical Library Upon Testing
	2.1.3 Recommendations

	2.2 Protected Objects
	2.2.1 Testing Protected Objects
	2.2.2 Testing Clients of Protected Objects
	2.2.3 Recommendations

	2.3 Controlled Types
	2.3.1 The Impact of Controlled Types Upon Testing
	2.3.2 Recommendations

	3 Summary and Conclusions

